Structure of human Niemann-Pick C1 protein.

نویسندگان

  • Xiaochun Li
  • Jiawei Wang
  • Elias Coutavas
  • Hang Shi
  • Qi Hao
  • Günter Blobel
چکیده

Niemann-Pick C1 protein (NPC1) is a late-endosomal membrane protein involved in trafficking of LDL-derived cholesterol, Niemann-Pick disease type C, and Ebola virus infection. NPC1 contains 13 transmembrane segments (TMs), five of which are thought to represent a "sterol-sensing domain" (SSD). Although present also in other key regulatory proteins of cholesterol biosynthesis, uptake, and signaling, the structure and mechanism of action of the SSD are unknown. Here we report a crystal structure of a large fragment of human NPC1 at 3.6 Å resolution, which reveals internal twofold pseudosymmetry along TM 2-13 and two structurally homologous domains that protrude 60 Å into the endosomal lumen. Strikingly, NPC1's SSD forms a cavity that is accessible from both the luminal bilayer leaflet and the endosomal lumen; computational modeling suggests that this cavity is large enough to accommodate one cholesterol molecule. We propose a model for NPC1 function in cholesterol sensing and transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease

Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...

متن کامل

Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2.

Export of LDL-derived cholesterol from lysosomes requires the cooperation of the integral membrane protein Niemann-Pick C1 (NPC1) and a soluble protein, Niemann-Pick C2 (NPC2). Mutations in the genes encoding these proteins lead to Niemann-Pick disease type C (NPC). NPC2 binds to NPC1's second (middle), lumenally oriented domain (MLD) and transfers cholesterol to NPC1's N-terminal domain (NTD)....

متن کامل

Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption.

The Niemann-Pick C1 Like 1 (NPC1L1) is a predicted polytopic membrane protein that is critical for cholesterol absorption. NPC1L1 takes up free cholesterol into cells through vesicular endocytosis. Ezetimibe, a clinically used cholesterol absorption inhibitor, blocks the endocytosis of NPC1L1 thereby inhibiting cholesterol uptake. Human NPC1L1 is a 1,332-amino acid protein with a putative stero...

متن کامل

Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK

The drug 2-hydroxypropyl-β-cyclodextrin (HPβCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease, type C (NPC) and has been advanced to human clinical trials. However, its mechanism of action for reducing cholesterol accumulation in NPC cells is uncertain and its molecular target is unknown. We found that methyl-β-cyclodextrin (MβCD), a potent analog of HPβCD, restored impaire...

متن کامل

Niemann-Pick C1-Like 1 protein: Another target for treatment of dyslipidemia? Evidence from the Myocardial Infarction Genetic Consortium and IMPROVE-IT trials

INTRODUCTION Absorption of both dietary cholesterol and cholesterol cleared from the liver through biliary secretion contributes substantially to tight control of cholesterol homeostasis. This process is mediated by a specific transporter – Niemann-Pick C1-Like 1 (NPC1L1) protein – localized to the brush border membrane of jejunal enterocytes (Figure 1, Table 1). NPC1L1 was first described by D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 29  شماره 

صفحات  -

تاریخ انتشار 2016